FINDFIRST/FINDNEXT AND THE POWER OF HABITS PAGE 1/2

BY HEIKO ROMPEL)
starter @

At work I recently needed a tool for searching
the company's server for certain files and
showing some information about them.

As soon as I arrived home I opened Lazarus and
started programming. For informations about
how to program a recursive file search I used a
search engine and found this site:

http://www.entwickler-ecke.de/
topic_nach+Dateien+suchen 1107,0.html

Here is the content:

Procedure FindFiles (aPath, aFindMask: String; aWithSub: Boolean; aResult: tStrings) ;

Var FindRec: tSearchRec;

Begin
// Wenn die Stringliste nil ist oder aPath oder aFind nicht angegeben ist dann raus

// If the string list is nil or the aPath or aFind is not found then exit
''") or Not Assigned (aResult) Then Exit;

If (aPath = '') or (aFindMask =

// Wenn am Ende der Pfadangabe noch kein \ steht, dieses hinzufiigen
// If at the end of the path there is no \ add it

// (Oder die Funktion IncludeTrailingPathDelimiter aus der Unit SysUtils.pas verwenden)
// Otherwise use the function IncludeTrailingPathDelimiter from unit SysUtils.pas

If aPath[Length (aPath)] <> '\' Then aPath := aPath + '\';

// Im aktuellen Verzeichnis nach der Datei suchen

// Search for data
If FindFirst (aPath + aFindMask,

Repeat
If (FindRec.Name <> '.') and (FindRec.Name <> '..') Then

// ...Ergebnis in die Stringlist einfiigen

// ..Fill in result into Stringlist
aResult.Add (aPath + FindRec.Name) ;

Until FindNext (FindRec) <> 0;

faAnyFile, FindRec) = 0 Then

FindClose (FindRec) ;

// Wenn nicht in Unterverzeichnissen gesucht werden soll dann raus
// If not ment to search in other data then exit
If Not aWithSub Then Exit;

// In Unterverzeichnissen weiter suchen
// Search in other Dir’s
If FindFirst (aPath +

Repeat
If (FindRec.Name <> '.') and (FindRec.Name <> '..') Then

// Feststellen, ob es sich um ein Verzeichnis handelt

// Make sure it is a Dir
If Boolean (FindRec.Attr and faDirectory) Then

// Funktion erneut aufrufen, um Verzeichnis zu durchsuchen (Rekursion)

// Call function again, to search the Dir (recursion)
FindFiles (aPath + FindRec.Name, aFindMask, aWithSub, aResult) ;

Until FindNext (FindRec) <> 0;

'* %' faAnyFile, FindRec) = 0 Then

FindClose (FindRec) ;
End;

FINDFIRST/FINDNEXT AND THE POWER OF HABITS PAGE 2/2

I had already used this code in Delphi before
- so I was able to adapt it quickly to my current
project.

The first test run took place on a local drive and
it was a success. Then came a test run on the NAS
* at home and that was a success also.
*(Network-attached storage (NAS) is a file-level
computer data storage server connected to a computer
network providing data access to a heterogeneous
group of clients. NAS is specialized for serving files
either by its hardware, software, or configuration. It
is often manufactured as a computer appliance - a
purpose-built specialized computer.[nb 1] NAS
systems are networked appliances which contain one
or more hard disk drives, often arranged into logical,
redundant storage containers or RAID.)

So I sent the EXE-File via email to my workplace.
Next day at work there was a surprise:

No files found.

Maybe it was because of the UNC path
(https://de.wikipedia.org/wiki/Uni
form Naming_ Convention)?

Back at home, I looked at the full paths and on
the NAS there were UNC paths but they didn't
cause problems. So the problem had to have
other origins. Next day - back at work - I went to
work with the source code and I ran the program
in DEBUG-mode.

What on earth could be the problem?

Simple- as ever - special characters like &,6,u !!!
(In 2015 you still have to bother with them.)

The almost endless paths had special characters
at the start section. I found out I had to use the
UTE8-function of Lazarus/FreePascal.
Fortunately changing to the UTF8 wasn't very
complicated in this case.

Here are the things you to change in the code:

// Is required for the UTF8-function

uses FileUtil;

old:

// Search the current directory for the file
If FindFirst (aPath + aFindMask,

FindRec) = 0 Then

faAnyFile,

new:

// Search the current directory for the file
If FindFirstUTF8 (aPath + aFindMask,
faAnyFile, FindRecord) = 0 Then

old:
Until FindNext (FindRec) <> 0;
FindClose (FindRec) ;

new:
Until FindNextUTF8 (FindRecord) <> 0;
FileUtil.FindCloseUTF8 (FindRecord) ;

Usually you simply forget that you can't use an
old code without problems. But I have to admit
that I never encountered the problems described
above in Delphi before.

Perhaps this story saves somebody from an
irritating job.

A special thanks to my son for the translation.

Heiko Rompel

Germany

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79

